Azure BI LIVE Online Training

This impeccable Azure BI Training course is carefully designed for aspiring BI Developers, Consultants and Azure Professionals. This Azure BI Online Training includes basic to advanced Azure Data Factory (ADF), Azure Storage, Azure Data Lake (ADL) and Azure Analysis Services (AAS) concepts with Real-time Project on End to End Implementation. This Azure BI Online Training course also includes Azure Migrations, Azure DataWarehouse (ADW) [Azure Synapse], Azure Data Bricks for Big Data Analytics, helpful for your next Job as well as to reshape your resume.

Complete practical and realtime Azure BI Training course with 24x7 LIVE server, Resume Guidance, ONE Real-time Project with Interview & Placement Assistance.

Azure BI Training Plans

  PLAN A PLAN B PLAN C
  1. Azure Data Engineer
2. Power BI
1. Azure Data Engineer
2. Power BI
3. Python
1. SQL Server
2. Azure Data Engineer
3. Power BI
4. Python
Total Duration 11 Weeks 15 Weeks 18 Weeks
Power BI: Report Design, Visuals
Power BI: M Lang, DX for ETL
Power BI: Report Server, Admin
ADF : Azure Data Factory
ADF : Data Imports, ETL
ADF : Data Flows, Wrangling
ADF : Transformations, ETL
Synapse: Configuration, Loads
Synapse: ETL with ADF, DWH
Synapse: Performance Tuning
Synapse: MPP, cDWH, DIUs
ADB : Azure Data Bricks
ADB : Architecture, Data Loads
ADB : Run Spark Jobs, Pools
ADB : Workspace, Delta Tables
Storage : Storage & Containers
Storage: BLOB Imports
Storage: Security
DP 500 [ADE + Power BI]
Python Jupyter Notebooks
Python Functions, JSON
Python for Big Data Analytics
Python Data Frames, Pandas
SQL: Database Basics, T-SQL
SQL : Constraints, Joins, Queries
T-SQL : Queries, SProcs, Lock Hints
SQL: Views, Group By, Self Joins
Total Course Fee* INR 37000
USD 465
INR 59000
USD 725
INR 64000
USD 810

Trainer: Mr. Sai Phanindra T

All Session Are Completely Practical & Real Time

SQL Server & T-SQL Schedules
S No Time (IST, Mon - Fri) Start Date  
1 6 AM - 7 AM Dec 5th Register
2 8 AM - 9 AM Dec 13th Register
3 6 PM - 7 PM Nov 22nd Register
4 8 PM - 9 PM Jan 22nd Register
5 9 PM - 10 PM Dec 19th Register
Power BI Training Schedules
S No Time (IST, Mon - Fri) Start Date  
6 8 AM - 9 AM Jan 3rd Register
7 6 PM - 7 PM Dec 11th Register
8 8 PM - 9 PM Dec 25th Register

Azure BI Training Highlights :

✔ Azure Fundamentals ✔ Azure AD
✔ Azure SQL Concepts ✔ Azure Migrations
✔ Azure AD ✔ Azure Key Vaults
✔ Azure Monitor ✔ Azure Functions
✔ Azure Data Factory ✔ Azure Synapse
✔ Azure Synapse ✔ Azure Strorage
✔ Data Lake Storage ✔ Data Lake Analytics
✔ Stream Analytics ✔ IoT, Event Hubs
✔ Azure Cosmos DB ✔ Azure Databricks
✔ Azure Notebooks ✔ U-SQL & NoSQL
✔ Python, Scala ✔ Spark Clusters
✔✔ End to End Real-time Project @ Resume

Azure BI Training Course Contents:

 

Ch 1: DATABASE INTRODUCTION

  • Data, Databases and RDBMS Software
  • Database Types : OLTP, DWH, OLAP
  • Microsoft SQL Server Advantages, Use
  • Versions and Editions of SQL Server
  • SQL : Purpose, Real-time Usage Options
  • SQL Versus Microsoft T-SQL [MSSQL]
  • Microsoft SQL Server - Career Options
  • SQL Server Components and Usage
  • Database Engine Component and OLTP
  • BI Components, Data Science Components
  • ETL, MSBI and Power BI Components
  • Course Plan, Concepts, Resume, Project
  • 24 x 7 Online Lab for Remote DB Access
  • Software Installation Pre-Requisites

Ch 6: CONSTRAINTS, INDEXES

  • Constraints and Keys - Data Integrity
  • NULL, NOT NULL Property on Tables
  • UNIQUE KEY Constraints: Importance
  • PRIMARY KEY Constraint: Importance
  • FOREIGN KEY Constraint: Importance
  • REFERENCES, CHECK & DEFAULT
  • Candidate Keys and Identity Property
  • Database Diagrams and ER Models
  • Relationships Verification and Links
  • Indexes : Basic Types and Creation
  • Index Sorting and Search Advantages
  • Clustered and NonClustered Indexes
  • Primary Key and Unique Key Indexes
  • Need for Indexes - working with Keys

Ch 11: TRIGGERS & TRANSACTIONS

  • Triggers - Purpose, Real-world Usage
  • FOR/AFTER Triggers - Real time Use
  • INSTEAD OF Triggers - Real time Use
  • INSERTED, DELETED Memory Tables
  • Using Triggers for Data Replication
  • Enable Triggers and Disable Triggers
  • Database Level, Server Level Triggers
  • Transactions : Types, ACID Properties
  • Transaction Types and AutoCommit
  • EXPLICIT & IMPLICIT Transactions
  • COMMIT and ROLLBACK Statements
  • Batch Concept and Go Statement
  • Using Transactions in Real-time
  • Using Conditional Commits, Rollbacks

Ch 2: SQL SERVER INSTALLATIONS

  • SQL Server & SSMS Installation Plan
  • SQL Server Pre-requisites : S/W, H/W
  • SQL Server 2022 & 2019 Installation
  • Instance Name and Server Features
  • Instances : Types and Properties
  • Default Instance, Named Instances
  • Service and Service Account Use
  • Authentication Modes and Logins
  • Windows Logins and SQL Logins
  • SQL Server Management Studio
  • Server Connections with SSMS Tool
  • Local and Remote Connections
  • System Databases: Master and Model
  • MSDB, TempDB, Resource Databases

Ch 7: JOINS BASICS, TSQL QUIRIES

  • JOINS - Table Comparisons Queries
  • INNER JOINS For Matching Data
  • OUTER JOINS For (non) Match Data
  • Join Queries with "ON" Conditions
  • Left Outer Joins - Example Queries
  • Right Outer Joins - Example Queries
  • FULL Outer Joins: Realtime Scenarios
  • CROSS JOIN and CROSS APPLY
  • One-way, Two way Data Comparisons
  • Table Aliases with Join Queries
  • Using Table Aliases & Column Aliases
  • Optimizing Join Queries with Indexes
  • Choosing Correct Comparison Columns
  • Joining Unrelated Tables in TSQL

Ch 12:  NORMAL FORMS, MERGE

  • First Normal Form and Atomicity
  • Third Normal Form and MVD Property
  • Boycee-Codd Normal Form : BNCF
  • Fourth Normal Form : Advantages
  • Self Reference Keys and 4 NF Usage
  • 1:1, 1:M, M:1, M:M Relationship Types
  • MERGE Statement - Comparing Tables
  • WHEN MATCHED and NOT MATCHED
  • Incremental Load & MERGE Statement
  • UPSERT Operations with MERGE
  • DML Operations with ON Keyword
  • Comparing JOINS with MERGE
  • Stored Procedures for Merge Statement

Ch 3: SSMS Tool, SQL BASICS - 1

  • Creating Databases: Files [MDF, LDF]
  • Creating Tables in User Interface
  • Data Insertion & Report in User Interface
  • SQL : Purpose and Real-time Usage
  • SQL Versus T-SQL : Basic Differences
  • DDL, DML, SELECT, DCL and TCL
  • Creating SSMS Sessions : SPID
  • Create, Connect Databases using SQL
  • Creating Tables with INT, CHAR
  • Data Storage, Inserts - Basic Level
  • Table Data Verifications with Select
  • SELECT Statement for Table Retrieval
  • Identify Databases and Tables
  • Identify Sessions and Session ID

Ch 8: GROUP BY, LINKED SERVERS

  • GROUP BY: Importance, Realtime Use
  • GROUP BY Queries and Aggregations
  • Group By Queries with Having Clause
  • Group By Queries with Where Clause
  • Using WHERE and HAVING in T-SQL
  • Using Group By in Data Audits
  • Using Group By with Joins - 2 Tables
  • Linked Servers Configurations
  • Linked Servers: RPC Settings & Tests
  • Data Access & Windows Security
  • Linked Servers, Remote Joins in TSQL
  • Multi Server Connections, DB Access
  • 2 Part, 3 Part, 4 Part Naming Styles
  • Remote Joins Queries and Aliases

Ch 13: TSQL Queries: Group By, Joins

  • Joins with Group By Queries in TSQL
  • Joining 4 Tables with Group By
  • Multi Table Joins with Table Aliases
  • Query Execution Order & Aliases
  • Joins with HAVING Conditions
  • Joins with WHERE & Aggregations
  • Joins with Sub Queries, Formatting
  • Joins with IIF() Function, Conditions
  • Joins with CASE Statement Conditions
  • UNION and UNION ALL Operator
  • Storing Queries in Database Views
  • Excel Office Data Connection Reports
  • Manual Data Refresh in Excel Reports

Ch 4: SQL BASICS - 2

  • Creating Tables: VARCHAR, FLOAT
  • Single Row Inserts, Multi Row Inserts
  • Rules for Data Insertion Statements
  • SELECT with WHERE Conditions
  • AND and OR Operators Usage
  • IN Operator and NOT IN Operator
  • Between, Not Between Operators
  • LIKE and NOT LIKE Operators
  • ORDER BY, TOP & OFFSET
  • Basic Sub Queries with SELECT
  • UPDATE Statement & Conditions
  • DELETE & TRUNCATE Statements
  • ALTER, ADD COLUMN Statements
  • DROP Statements: Table, Database

Ch 9: VIEWS - BASICS, DATA TYPES

  • Database Objects: Overview & Usage
  • Views: Types, Usage in Real-time
  • Creating, Executing & Verifying Views
  • DML Operatons with Views
  • Using WITH CHECK OPTION in Views
  • System Predefined Views and Audits
  • databases, sys.schemas, sys.tables
  • Variables - Purpose & Usage
  • Variables - Declaration and Data Retreival
  • Table Variables : Declaration, Usage
  • Data Types - Numeric, Character Types
  • Data Types - Decimal, Floating Types
  • Data Types - Date and Time Data Types
  • Cursor Data Type and Realtime Use

Ch 14: Architecture, Cursors & CTEs

  • Database Architecture : Data & Log Files
  • Secondary Data Files (ndf) & Table Data
  • Filegroups: Realtime Use, Data Mapping
  • Using Filegroups for Table Creations
  • File Size, Max Size and Auto Growth
  • Log Files (ldf) : Realtime Usage, Sizing
  • Cursors - Benefits, Cursors in SProcs
  • Using Cursors in Real-world Scenarios
  • Cursors : Declaring Variables, Life Cycle
  • Declaration, Open / Close Cursors
  • CTE: Common Table Expressions
  • Real-time Scenarios with CTEs - Usage
  • Using CTEs for Data Retrieval, SELECT

Ch 5: SQL Basics - 3, TSQL INTRO

  • Database Objects : Tables and Schemas
  • Schemas : Group Tables in Database
  • Schemas : Security Management Object
  • Creating Schemas & Batch Concept
  • Using Schemas for Table Creation
  • Data Storage in Tables with Schemas
  • Data Retrieval & Usage with Schemas
  • Table Migrations across Schemas
  • Import and Export Wizard in SSMS
  • Data Imports with Excel File Data
  • Performing Bulk Operations in SSMS
  • Temporary Tables : Real-time Use
  • Local and Global Temporary Tables
  • # and ## Prefix, Scope of Usage

Ch 10: FUNCTIONS, PROCEDURES BASICS

  • Using Variables in Real-time
  • Understand & Use Parameters
  • Procedures: Usage in Real-time
  • Creating and Executing Stored Procs
  • Using Parameters in SQL Server
  • Functions: Creation, Usage in Real-time
  • Using table Data Type with Functions
  • Functions for Dynamic, Condition Joins
  • Implement Parameterized Joins
  • Data and Time Functions with Queries
  • String Functions & Usage in TSQL
  • Verify Database Objects; sp_helpdb
  • sp_help, sp_helptext, sp_helpindex
  • sp_help, sp_rename, sp_recompile

Case Study 1 - Database, Table Design
(Involves All concepts from Ch 1 to 7)

Case Study 2 - Query Writing
(Involves All concepts from Ch 1 to 14)

Part 1: Power BI Report Design

Part 2: ETL, Data Modeling, DAX

Part 3: Power BI Cloud, Admin

Ch 1 : POWER BI BASICS

  • Power BI Job Roles in Real-time
  • Power BI Data Analyst Job Roles
  • Business Analyst - Job Roles
  • Power BI Developer - Job Roles
  • Power BI for Data Scientists
  • Comparing MSBI and Power BI
  • Comparing Tableau and Power BI
  • MCSA 70-778, MCSA 70-779 Exam
  • Types of Reports in Real-World
  • Interactive & Paginated Reports
  • Analytical & Mobile Reports
  • Data Sources Types in Power BI
  • Power BI Licensing Plans - Types
  • Power BI Training : Lab Plan
  • Power BI Dev & Prod Environments

Ch 7 : POWER QUERY LEVEL 1

  • Power Query M Language Purpose
  • Power Query Architecture and ETL
  • Data Types, Literals and Values
  • Power Query Transformation Types
  • Table & Column Transformations
  • Text & Number Transformations
  • Date, Time and Structured Data
  • List, Record and Table Structures
  • let, source, in statements @ M Lang
  • Power Query Functions, Parameters
  • Invoke Functions, Execution Results
  • Get Data, Table Creations and Edit
  • Merge and Append Transformations
  • Join Kinds, Advanced Editor, Apply
  • ETL Operations with Power Query

Ch 13 : POWER BI CLOUD - 1

  • Power BI Service Architecture
  • Power BI Cloud Components, Use
  • App Workspaces, Report Publish
  • Reports & Related Datasets Cloud
  • Creating New Reports in Cloud
  • Report Publish and Report Uploads
  • Dashboards Creation and Usage
  • Adding Tiles to Dashboards
  • Pining Visuals and Report Pages
  • Visual Pin Actions in Dashboards
  • LIVE Page Interaction in Dashboard
  • Adding Media: Images, Custom Links
  • Adding Chs and Embed Links
  • API Data Sources, Streaming Data
  • Streaming Dataset Tiles (REST API)

Ch 2: BASIC REPORT DESIGN

  • Power BI Desktop Installation
  • Data Sources & Visual Types
  • Canvas, Visualizations and Fields
  • Get Data and Memory Tables
  • In-Memory xvelocity Database
  • Table and Tree Map Visuals
  • Format Button and Data Labels
  • Legend, Category and Grid
  • PBIX and PBIT File Formats
  • Visual Interaction, Data Points
  • Disabling Visual Interactions
  • Edit Interactions - Format Options
  • SPOTLIGHT & FOCUSMODE
  • CSV and PDF Exports. Tooltips
  • Power BI EcoSystem, Architecture

Ch 8 : POWER QUERY LEVEL 2

  • Query Duplicate, Query Reference
  • Group By and Advanced Options
  • Aggregations with Power Query
  • Transpose, Header Row Promotion
  • Reverse Rows and Row Count
  • Data Type Changes & Detection
  • Replace Columns: Text, NonText
  • Replace Nulls: Fill Up, Fill Down
  • PIVOT, UNPIVOT Transformations
  • Move Column and Split Column
  • Extract, Format and Numbers
  • Date & Time Transformations
  • Deriving Year, Quarter, Month, Day
  • Add Column : Query Expressions
  • Query Step Inserts and Step Edits

Ch 14 : POWER BI CLOUD - 2

  • Dashboards Actions,Report Actions
  • DataSet Actions: Create Report
  • Share, Metrics and Exports
  • Mobile View & Dashboard Themes
  • Q & A [Cortana] and Pin Visuals
  • Export, Subscribe, Subscribe
  • Favorite, Insights, Embed Code
  • Featured Dashboards and Refresh
  • Gateways Configuration, PBI Service
  • Gateway Types, Cloud Connections
  • Gateway Clusters, Add Data Sources
  • Data Refresh : Manual, Automatic
  • PBIEngw Service, ODG Logs, Audits
  • DataFlows, Power Query Expressions
  • Adding Entities and JSON Files

Ch 3 : Visual Sync, Grouping

  • Slicer Visual : Real-time Usage
  • Orientation, Selection Properties
  • Single & Multi Select, CTRL Options
  • Slicer : Number, Text and Date Data
  • Slicer List and Slicer Dropdowns
  • Visual Sync Limitations with Slicer
  • Disabling Slicers,Clear Selections
  • Grouping : Real-time Use, Examples
  • List Grouping and Binning Options
  • Grouping Static / Fixed Data Values
  • Grouping Dynamic / Changing Data
  • Bin Size and Bin Limits (Max, Min)
  • Bin Count and Grouping Options
  • Grouping Binned Data, Classification

Ch 9 : POWER QUERY LEVEL 3

  • Creating Parameters in Power Query
  • Parameter Data Types, Default Lists
  • Static/Dynamic Lists For Parameters
  • Removing Columns and Duplicates
  • Convert Tables to List Queries
  • Linking Parameters to Queries
  • Testing Parameters and PBI Canvas
  • Multi-Valued Parameter Lists
  • Creating Lists in Power Query
  • Converting Lists to Table Data
  • Advanced Edits and Parameters
  • Data Type Conversions, Expressions
  • Columns From Examples, Indexes
  • Conditional Columns, Expressions

Ch 15 : EXCEL & RLS

  • Import and Upload Options in Excel
  • Excel Workbooks and Dashboards
  • Datasets in Excel and Dashboards
  • Using Excel Analyzer in Power BI
  • Using Excel Publisher in PBI Cloud
  • Excel Workbooks, PINS in Power BI
  • Excel ODC Connections, Power Pivot
  • Row Level Security (RLS) with DAX
  • Need for RLS in Power BI Cloud
  • Data Modeling in Power BI Desktop
  • DAX Roles Creation and Testing
  • Adding Power BI Users to Roles
  • Custom Visualizations in Cloud
  • Histogram,Gantt Chart,Infographics

Ch 4 : Hierarchies, Filters

  • Creating Hierarchies in Power BI
  • Independent Drill-Down Options
  • Dependant Drill-Down Options
  • Conditional Drilldowns, Data Points
  • Drill Up Buttons and Operations
  • Expand & Show Next Level Options
  • Dynamic Data Drills Limitations
  • Show Data and See Records
  • Filters : Types and Usage in Real-time
  • Visual Filter, Page Filter, Report Filter
  • Basic, Advanced and TOP N Filters
  • Category and Summary Level Filters
  • DrillThru Filters, Drill Thru Reports
  • Keep All Filters" Options in DrillThru
  • CrossReport Filters, Include, Exclude

Ch 10 : DAX Functions - Level 1

  • DAX : Importance in Real-time
  • Real-world usage of Excel, DAX
  • DAX Architecture, Entity Sets
  • DAX Data Types, Syntax Rules
  • DAX Measures and Calculations
  • ROW Context and Filter Context
  • DAX Operators, Special Characters
  • DAX Functions, Types in Real-time
  • Vertipaq Engine, DAX Cheat Sheet
  • Creating, Using Measures with DAX
  • Creating, Using Columns with DAX
  • Quick Measures and Summaries
  • Validation Errors, Runtime Errors
  • SUM, AVERAGEX, KEEPFILTERS
  • Dynamic Expressions, IF in DAX

Ch 16 : Report Server, RDL

  • Need for Report Server in PROD
  • Install, Configure Report Server
  • Report Server DB, Temp Database
  • Webservice URL, Webportal URL
  • Creating Hybrid Cloud with Power BI
  • Using Power BI DesktopRS
  • Uploading Interactive Reports
  • Report Builder For Report Server
  • Report Builder For Power BI Cloud
  • Designing Paginated Reports (RDL)
  • Deploy to Power BI Report Server
  • Data Source Connections, Report
  • Power BI Report Server to Cloud
  • Tenant IDs Generation and Use
  • Mobile Report Publisher, Usage

Ch 5 : Bookmarks, Azure, Modeling

  • Drill-thru Filters, Page Navigations
  • Bookmarks : Real-time Usage
  • Bookmarks for Visual Filters
  • Bookmarks for Page Navigations
  • Selection Pane with Bookmarks
  • Buttons, Images with Actions
  • Buttons, Actions and Text URLs
  • Bookmarks View & Selection Pane
  • OLTP Databases, Big Data Sources
  • Azure Database Access, Reports
  • Import & Direct Query with Power BI
  • SQL Queries and Enter Data
  • Data Modeling : Currency, Relations
  • Summary, Format, Synonyms
  • Web View & Mobile View in PBI

Ch 11 : DAX Functions - Level 2

  • Data Modeling Options in DAX
  • Detecting Relations for DAX
  • Using Calculated Columns in DAX
  • Using Aggregated Measures in DAX
  • Working with Facts & Measures
  • Modeling : Missing Relations
  • Modeling : Relation Management
  • CALCULATE Function Conditions
  • CALCULATE & ALL Member Scope
  • RELATED & COUNTROWS in DAX
  • Entity Sets and Slicing in DAX
  • Dynamic Expressions, RETURN
  • Date, Time and Text Functions
  • Logical, Mathematical Functions
  • Running Total & EARLIER Function

Ch 17: MSBI Integrations

  • Power BI with SQL Server Source
  • Power BI with SQL Data Warehouse
  • Power BI with SSAS OLAP Server
  • Power BI with Azure SQL DB Source
  • Power BI with Azure SQL Warehouse
  • Power BI with Azure Analysis Server
  • Power BI with SSRS (RDL) Reports
  • Power BI Report Builder Tool
  • Installation & Configuration
  • Paginated Reports Design, Use
  • Data Sources, Datasets, RDL
  • Report Publish (RDL) to Cloud
  • Report Verifications, Data Sync
  • Interactive Vs Paginated Reports
  • Creating, Managing Alerts in Cloud

Ch 6 : Visualization Properties

  • Stacked Charts and Clustered Charts
  • Line Charts, Area Charts, Bar Charts
  • 100% Stacked Bar & Column Charts
  • Map Visuals: Tree, Filled, Bubble
  • Cards, Funnel, Table, Matrix
  • Scatter Chart : Play Axis, Labels
  • Series Clusters & Selections
  • Waterfall Chart and ArcGIS Maps
  • Infographics, Icons and Labels
  • Color Saturation, Sentiment Colors
  • Column Series, Column Axis in Lines
  • Join Types : Round, Bevel, Miter
  • Shapes, Markers, Axis, Plot Area
  • Display Units,Data Colors,Shapes
  • Series, Custom Series and Legends

Ch 12 : DAX FUNCTIONS Level 3

  • 1:1, 1:M and M:1 Relations
  • Connection with CSV, MS Access
  • AVERAGEX and AVERAGE in DAX
  • KEEPFILTERS and CALCUALTE
  • COUNTROWS, RELATED, DIVIDE
  • PARALLELPERIOD, DATEDADD
  • CALCULATE & PREVIOUSMONTH
  • USERELATIONSHIP, DAX Variables
  • TOTALYTD , TOTALQTD
  • DIVIDE, CALCULATE, Conditions
  • IF..ELSE..THEN Statement
  • SELECTEDVALUE, FORMAT
  • SUM, DATEDIFF Examples in DAX
  • TODAY, DATE, DAY with DAX
  • Time Intelligence Functions - DAX

Ch 18 : REAL-TIME PROJECT
  • Project Requirement Analysis
  • Implementing SDLC Phases
  • Requirement Gathering, FSA
Phase 1:
  • PBIX Report Design
  • Visualizations, Properties
  • Analytics and Formating
Phase 2:
  • Data Modeling, Power Query
  • Dynamic Connections, Azure DB
  • Parameters and M Lang Scripts
Phase 3:
  • DAX Requriements, Analysis
  • Cloud and Report Server
  • Project FAQs and Solutions

Mod 1: Azure Data Factory [ADF], Synapse

Mod 2: Azure Storage & Stream Analytics

Mod 3: Azure Databricks & SparkSQL

Chapter 1: Cloud Basics, Azure SQL DB

  • Cloud Introduction and Azure Basics
  • Azure Implementation: IaaS, PaaS, SaaS
  • Benefits of Azure Cloud Environment
  • Azure Data Engineer: Job Roles
  • Azure Storage Components
  • Azure ETL & Streaming Components
  • Need for Azure Data Factory (ADF)
  • Need for Azure Synapse Analytics
  • Azure Resources and Resource Types
  • Resource Groups in Azure Portal
  • Azure SQL Server [Logical Server]
  • Firewall Rules and Azure Services
  • Connections with SSMS & ADS Tools
  • Working with Azure Portal
  • Resource Group Navigations, Options

Chapter 1: Azure Storage & Containers

  • Storage Components in Microsoft Azure
  • Azure Storage Services and Types - Uses
  • High Availability, Durability & Scalability
  • Blob: Binary Large Object Storage
  • General Purpose: Gen 1 & Gen 2 Versions
  • Blobs, File Share, Queues and Tables
  • Data Lake Gen 2 Operations with Azure
  • Azure Storage Account Creation
  • Azure Storage Container: Usage
  • Azure Data Explorer: Operations
  • File Uploads, Edits and Access URLs
  • Azure Storage Explorer Tool Usage
  • Azure Account Options in Explorer
  • Directory Creation, File Operations
  • End User Access Options With Files
  • Data Explorer Vs Storage Explorer Tool

Chapter 1: Azure Intro, Azure Databricks

  • Azure Databricks : Purpose & Config
  • Need for Azure Databricks (ADB)
  • Azure Databricks Service Creation
  • Azure Databricks Workspace & Usage
  • Spark Cluster Configurations & Capacity
  • Driver Nodes and Worker Nodes in Spark
  • Master Node & Cluster Creation Process
  • Cluster Types and Capacity Options
  • Standard, High Concurrency Clusters
  • Databricks Runtime Service & DBUs
  • Databricks File System (DBFS) and Usage
  • Azure Databricks Workspace Operations
  • ETL and Data Storage Components
  • Spark Concepts and Spark SQL
  • Spark Context and Spark Session
  • DataFrame, Dataset and Real-time Use

Chapter 2: Synapse SQL Pools (DWH)

  • Dedicated SQL Pools in Azure
  • Enterprise Data Warehouse with Synapse
  • DWU: Data Warehouse Units, Resources
  • Massively Parallel Processing (MPP)
  • Control Nodes and Compute Nodes
  • SQL Pool Access from SSMS Tool
  • T-SQL Queries @ SQL Pools
  • Start/Resume/Pause, Scaling Options
  • Creating Tables in Azure SQL Pool
  • Compression, MAX DOP & Indexes
  • Distributions: Round Robin, Hash
  • Distributions: Replicate and Usage
  • Data Imports with COPY Table
  • Dynamic Views (DMV) with PDW
  • Data Loads Monitoring, Resource Class

Chapter 2: Azure Migration, BLOB Imports

  • SQL Server (On-Premise) to Azure Migration
  • Source Database Scripts & Validations
  • BACPAC File Generation From SSMS Tool
  • Azure Data Lake Storage and SSMS Access
  • Azure Storage Container, BACPAC Files
  • Azure SQL Server Creation From Portal
  • Azure SQL DB Imports, Storage SAS Keys
  • Azure SQL Database Migrations, Verification
  • BLOB Data Access from On-Premise
  • Data Imports From Excel and CSV Files
  • BLOB Data Imports using T-SQL Queries
  • SAS - Shared Access Signature Generation
  • CSV File - Uploads, Downloads, Edits, Keys
  • Master Keys, Credentials, External Sources
  • BULK INSERT Statement and Data Imports
  • T-SQL Imports : Practical Limitations

Chapter 2: SQL Notebooks & Python

  • Notebooks: Concept, Usage Options
  • Creating SQL Notebooks in Databricks
  • Using DBFS Tables in SQL Notebooks
  • Data Access and Analytics Options
  • SparkSQL Queries: SELECT, GROUP BY
  • SparkSQL Queries: Aggregates, Conditions
  • Notebook Operations: Download, Clone
  • Notebook Operations: Upload, Reuse
  • SQL Notebooks with Python Code
  • Using DBFS Sample Data Sources (CSV)
  • Dataframes: Creation and Real-time Use
  • Pandas Dataframe, Virtual Table Creation
  • Dataframe Data Access, Caching Options
  • Take() and Display() Functions in PySpark
  • Temporary View Creation and Access
  • SparkSQL Queries, Analytics, Chart Reports

Chapter 3: Azure Data Factory Concepts

  • Azure Data Factory (ADF) Concepts
  • Hybrid Data Integration at Scale
  • ADF Pipeline Components & Usage
  • Configure ADF Resource in Azure
  • Understanding ADF Portal and IR
  • Linked Services and Connections
  • Datasets and Tables / Files for ETL
  • ADF Pipelines: Design, Publish & Trigger
  • ADF Pipeline with Copy Data Tool
  • Creating Azure Storage Account
  • Storage Container, BLOB File Uploads
  • Data Loads with Azure BLOB Files
  • DIU Allocations and Concurrency
  • Creating Linked Services, Datasets
  • Pipeline Trigger, Author and Monitor

Chapter 3: Azure Tables, Shares

  • Azure Tables - Real-time Usage
  • Schema-less Design and Access Options
  • Structured and Relational Data Storage
  • Tables, Entities and Properties Concepts
  • Azure Tables: Creation and Data Inserts
  • Azure Tables in Portal - GUI and Data Types
  • Azure Tables: Data Imports in Explorer
  • Data Edits, Queries & Delete Operations
  • Azure Files - SMB Protocol, Creation, Usage
  • Shared Access, Fully Managed & Resiliency
  • Performance, Size Requirements for Shares
  • Azure Storage Explorer Tool for File Shares
  • Azure Queues: Message Queues, Limitations
  • Adding Messages, Queuing and De-Queuing
  • Data Access & Clear Queue from Explorer
  • End Points for Azure Message Queues

Chapter 3: Python Notebooks

  • Azure SQL Server Configurations
  • Azure SQL Database Creation
  • Azure Firewall Rules and IP Address
  • Allow Azure Services, Remote Access
  • Connection Tests with SSMS Tool
  • Python Notebooks with Azure Databricks
  • Data Imports and Table Creations (Code)
  • Parquet Files and Usage in Databricks
  • Using Dataframes for Data Operations
  • SparkSQL Queries with SELECT, TOP
  • Establishing Connections to Azure SQL DB
  • JDBC Connection Strings, DataframeWriter
  • JDBC Properties, Port Settings & Options
  • Data Extraction, SQLContext & Dataframes
  • Pandas Data Frame for Big Data Analytics
  • JDBC URL Options & PySparkSQL Modules

Chapter 4: ADF Pipelines, Polybase

  • Copy Data Tool For ETL Operations
  • Azure SQL DB to Synapse Data Loads
  • Working with Multi Tables Data Loads
  • Query Options for Source Datasets
  • Transformations with Copy Data Tool
  • Rename, Rearrange & Remove Options
  • Pipeline Execution: DTU & DOCP
  • ADF Pipeline Monitoring Options
  • ADF Pipelines: Execution Settings
  • ADF Logging Options, Consistency Check
  • Compression Option, DOP and DOCP
  • ETL Staging Advantages & Performance
  • Staging with Storage Account, Container
  • ADF Pipeline Triggers and Monitoring
  • Polybase For Azure Synapse, Advantages

Chapter 4: Azure Storage Security, Admin

  • Azure Data Lake Storage Security Options
  • Shared Access Keys - Primary, Secondary Keys
  • SAS Key Generation: Container, Tables, Files
  • SAS Key Permissions, Validation Options
  • Access Keys: Account Level Permissions
  • Azure Active Directory (AAD): Users, Groups
  • Azure AD Security: RBAC with IAM, ACLs
  • Owner Role, Contributor and Reader Role
  • Azure Data Lake Storage Security Options
  • ACL : Access Control Lists & Security
  • Azure BLOB Storage Containers & ACLs
  • Folder Level and File Level Security
  • ACL Permissions: Read, Write & Execute
  • Access Policy: Creation and Realtime Use
  • Permissions: rwacdl; Azure Principals, CORS
  • Comparing IAM and ACLs in Data Lake Store

Chapter 4: Open Data Sources, DeltaLakes

  • Creating Python Notebooks with Databricks
  • Spark Dataframes with Azure OpenDatasets
  • Windows Azure Storage Blob [wasb] Sources
  • Creating Dataframes & Temporary Views
  • Using Print and Display Functions with ADB
  • Big Data Analysis with BLOB Data & Charts
  • Keys, Values, Aggregations, Display Type
  • Databricks Notebooks, Jobs and Stages
  • Azure DeltaLake Implementation
  • ACID Properties and Upsert Advantages
  • Delta Engine Optimizations & Uses
  • Pipeline Creation with JSON Files in DBFS
  • Delta Tables Creation, Data Loads
  • Spark Cluster Settings: Auto Optimize
  • Auto Compact and Delta Table Optimize
  • Delta Locations; Data Retrieval, Versions

Chapter 5: OnPremise Data with ADF

  • On-Premise Data Sources with Azure
  • Self Hosted Integration Runtime (IR)
  • Access Keys, Remote Linked Services
  • Synapse SQL Pool (DW) with OnPremise
  • Staged Data Copy and Performance
  • Pipeline Executions and Monitoring
  • Pipeline RunIDs and Audits / Tracing
  • Incompatible Rows Skips, Fault Tolerance
  • Incremental Loads with Files (BLOB)
  • Pipeline Executions and Schedules
  • Regular Schedules and Tumbling Window
  • Execution Retry and Delay Options
  • Binary Copy, Last Modified Date in Blob
  • Automated Loops and Trigger Schedules
  • Incremental Loads Verification Tests

Chapter 5: Azure Monitoring, Power BI

  • Azure Monitor, Metrics & Logs
  • Monitoring Azure Storage Namespaces
  • Add KQL Metrics; Account, Blob and File
  • Total Ingress and Egress Metrics: Charts
  • Average Latency, Transaction Count
  • Request Breakdowns, Signal Logic Options
  • Azure Alerts and Conditions, Notifications
  • Signal Logic Conditions and Emails
  • Power BI Desktop Tool Installation
  • Binary Data and Record Data Access
  • Azure Data Lake Storage: Access Keys
  • Azure Data Lake Storage with Power BI
  • BLOB File Access with Power BI
  • Azure Tables Creation and File Imports
  • Azure Table Access with Power BI

Chapter 5: Databricks Security & Jobs

  • Azure Databricks Security Operations
  • Azure Active Directory (Azure AD)
  • AD Users and RBAC with IAM
  • Owner, Contributor & Reader Roles
  • Workspace Admin Permissions
  • Notebook Permissions and Share Options
  • Shared Notebooks, User Access Options
  • Notebook Operations: Clone & Export
  • Databricks Jobs: Creation Options, Usage
  • Job Limits, Workspace, Concurrency Limits
  • Notebooks with and without Parameters
  • Jobs with Default Parameters, Executions
  • Interactive, Automated Clusters for Jobs
  • Job Schedules and Manual Executions
  • Active Jobs, Recently Run Jobs, Monitoring
  • ADB Jobs with Azure OData Sources, BLOB

Chapter 6: ADF Data Flow - 1

  • Limitations with Copy Data Tool
  • Data Flow Task, Data Flow Activity
  • Transformations with Data Flow
  • Spark Cluster For Debugging
  • Cluster Node Configurations
  • Data Preview Options with DFT
  • SELECT Transformation & Options
  • JOIN Transformation and Usage
  • Conditional Split Transformation
  • Aggregate & Group By Transformations
  • Synapse Sink Options with DFT
  • DFT Optimization Techniques
  • Pipeline Debug Runs and ETL Testing
  • Spark Cluster For Pipeline Executions
  • Pipeline Monitoring & Run IDs

Chapter 6: Azure Stream Analytics, IoT

  • Azure Stream Analytics: Real-time Usage
  • Real-time Data Processing, Event Tracking\
  • Ingest, Deliver and Analysis Operations
  • Azure Stream Analytics Jobs Concept
  • Understanding Input & Output Options
  • SAQL Queries for Stream Analytics Jobs
  • IoT: Internet Of Things For Real-time Data
  • Need for IoT Hubs and Event Hubs
  • Creating IoT Device for Data Inputs
  • Creating Azure Strean Analytics Resource
  • Stream Analytics Jobs for Historical Data
  • Azure SQL Database Options for ASA Jobs
  • SAQL: Query Formatting and Validation
  • Historical Data Uploads, ASA Job Execution
  • Stream Analytics Job Monitoring Options

Chapter 6: Databricks @ BLOB, Power BI

  • BLOB Data Access with Databricks
  • Accessing Storage Account, Container
  • Gerate, Use SAS: Shared Access Signature
  • dbutils.fs.mount() with DBFS Store
  • fs.azure.sas.container.strorageaccount
  • spark.read() and DBFS Mounts
  • Scala Transformations, Create Temp View
  • Spark SQL Queries with Temp Views
  • dataframe.write.jdbc() & JVM Properties
  • spark.read.jdbc() with Azure SQL DB
  • Power BI Integration with Databricks
  • Server Host Name, Port and Http Path
  • Cluster Configurations and JDBC
  • User Access Token Generation, Usage
  • Spark ClusterAccess, Power BI Analytics

Chapter 7: ADF Data Flow - 2

  • ADF Pipelines For ETL Operations
  • Data Flow Tasks and Activities in Synapse
  • Pivot Transformation For Normalization
  • Generating Pivot Column, Aggregations
  • Pivot Transformation and Pivot Settings
  • Pivot Key Selection, Value and Nulls
  • Pivoted Columns and Column Pattern
  • Column Prefix, Help Graphic & Metadata
  • Window Functions & Usage in Data Flow
  • Rank / DenseRank / Row Number
  • Over Clause and Input Options
  • Derived Column Transformations
  • Exists & Lookup Transformations
  • Reusing Data Flow Tasks in Synapse
  • Pipeline Validations & Executions

Chapter 7: IoT Hubs & Event Hubs

  • Azure Stream Analytics For API Data
  • IoT Hubs & IoT Devices, Connection Strings
  • Rasberry APP Connections with IoT Hub
  • Azure Storage Account and Container
  • Creating Azure Stream Analytics Job
  • Configuring Input Aliases with IoT Hub
  • Configuring Output Alias with ADLS Gen 2
  • SAQL Query and Job Executions; Monitoring
  • Azure Event Hubs and Event Instances
  • Event Hub Namespaces, Partition Counts
  • Access Policies, Permissions & Defaults
  • RootManageSharedAccessKey & Options
  • Connection Strings & Event Service Bus
  • Telco App Installation, Executions. LIVE Data
  • On-Premise App Integration with ASA Jobs

Chapter 7: Databricks Integrations

  • Azure Databricks with Data Lake Storage
  • Handling Unstructured Data in Azure
  • Data Preparation and Staging Operations
  • Azure App (Service Principal) Registration
  • Azure Key Vault Creation & Key Usage
  • Service Principal Permissions @ Data Loads
  • Tenants and Authorization Settings
  • Client Credentials, Token Provider Options
  • Spark Notebooks For Dynamic Connections
  • Parameterized Options & Blob Access
  • Data Preparation & Big Data Ingestion
  • Data Extraction and ADLS Storage
  • show(), transformations, wasbs Options
  • Azure SQL Server & Synapse Creations
  • Data Loads with Incremental Changes

Chapter 8: Azure Synapse Analytics

  • Azure Synapse Analytics Resource
  • Azure Synapse Analytics Workspace
  • Managed Resource Group, SQL Account
  • SQL Admin Account and its Purpose
  • Operations with Synapse Workspace
  • ADLS Gen 2 Storage Account, Container
  • Synapse Studio (Synapse Portal)
  • Dedicated SQL Pools & Spark Pools
  • Creating Dedicated SQL Pools
  • Synapse Tables, Data Loads with T-SQL
  • COPY INTO Statements with T-SQL
  • Clustered Column Store Indexes
  • Row Terminator and Compressions
  • T-SQL Queries and Aggregations
  • Aggregation Data Loads in Synapse

Chapter 8: Azure Stream Analytics Security

  • Azure Key Vaults & ADLS [Data Lake] Security
  • Azure Passwords, Keys and Certificates
  • Azure Key Vaults - Name and Vault URI
  • Inbuilt Managed Key and Azure Key Vault
  • Standard Type, Premium Type Azure Key Vaults
  • Secret Page, Key Backups and Key Restores
  • Adding Keys to Azure Vaults. Key Type, Size
  • Using Azure Key Vaults to secure Resources
  • Azure Storage: Replications and DR Options
  • LRS: Locally Redundant Storage
  • GRS: Globally Redundant Storage
  • ZRS: Zone Redundant Storage
  • Replication Options and Advantages
  • Replication Verification and Modifications
  • Azure Storage Endpoints, Failover Partner
  • ADF Integration, Real-time Project
  • Azure Databricks Integrations with ADF
  • Defining Scala Notebooks in ADB
  • Using Notebooks in Azure Data Factory
  • spark.conf.set & fs.azure.account.key
  • spark.read.format, Option() and Head()
  • Online Retail Database Data Source
  • Azure Migrations and ETL Concepts
  • Azure SQL Pool (Synapse DWH) Tables
  • Apache Spark Pool : Databases, Tables
  • Azure Data Lake Storage (ADLS Gen 2)
  • Azure Stream Analytics Jobs with IoT
  • Azure Data Bricks and DBFS, Notebooks
  • Concept wise FAQs, Resume Guidance
  • Project Requirement, Solution, FAQs
  • DP 203 Certification Guidance

Chapter 9: Synapse Analytics with Spark

  • Apache Spark Pool in Azure Synapse
  • Spark Cluster Nodes: Vcores, Memory
  • Creating Spark Clusters @ Synapse Studio
  • Python Notebooks For Remote Access
  • Creating Databases in Apache Spark Pool
  • Data Loads from Dedicated SQL Pools
  • Table Creations, Aggregation Operations
  • PySpark Code for Data Operations, Writes
  • Serverless Pool in Azure Synapse
  • Connections, Usage with Serverless Pool
  • Using Azure OpenDatasets in Synapse
  • OPENROWSET and BULK Data Loads
  • Azure Storage Account : Data Analysis
  • Working with Parquet Files in Synapse
  • Python Notebooks (Pyspark) in Synapse

Chapter 10: Incremental Loads @ Synapse

  • Incremental Loads with Synapse Studio
  • Multi Table Merge Operations
  • On-Premise Data Sources & Timestamps
  • Azure SQL DB Destinations, Watermarks
  • Watermark Table Usage & Audits
  • Stored Procedures for Timestamp Updates
  • Table Data Type and Dynamic MERGE
  • SQL Queries for Datasets and Fetch
  • Lookup Activity and its Usage un Synapse
  • Expressions in ADF Portal for Lookup
  • Expressions in ADF Portal for Source
  • Output Pipeline Expression, Data Window
  • Concat Function, Run IDs Expressions
  • JSON Parameters, Pipeline Scheduling
  • Pipeline Validation, Trigger and Monitoring

Chapter 11: Optimizations, Power Query

  • ADF ETL with GUI : Power Query
  • Power Query Resoruce Creation, Use
  • Source Data Configurations & Settings
  • Rename, Remove, Pivot, Group By, Order
  • Index, Filter, Remove Error Rows
  • Using Power Query Activity, ADF Pipelines
  • Spark Cluster Configurations for Pipelines
  • Concurrency, Big Data Recommendations
  • Storage Optimization Techniques
  • ETL Optimization Techniques
  • SQL Pool (Synapse) Optimizations
  • Indexes, Partitions, Distributions, DOP
  • Pipeline Optimization Techniques
  • Partitions, DOCP, Compressions, DIU
  • Staging, Polybase and Core Counts

Chapter 12: Pipeline Monitoring, Security

  • Azure Monitor Resource and Usage
  • Pipeline Monitoring Techniques
  • ADF: Pipeline Monitoring and Alerts
  • Synapse: Pipeline Monitoring and Alerts
  • Synapse: Storage Monitoring and Alerts
  • Conditions, Signal Rules and Metrics
  • Email Notifications with Azure
  • Concurrency, Big Data Recommendations
  • Azure Active Directory (AAD) Users, Groups
  • IAM: Identity & Access Management
  • Synapse Workspace Security with RBAC
  • ADF Security with RBAC: Owner, Contributor
  • Azure Synapse SQL Pool Security: Logins
  • Users, Roles and Resource Classes (RC)
  • ADF V1 to V2 Migrations, Considerations

Part 1: Python Fundamentals

Part 2: Python For Data Analytics - 1

Part 3: Python For Data Analytics - 2

Ch 1: Data Analytics Intro & Python

  • Data and Databases : Introductions
  • Data Analytics Job Role
  • Python : Introduction & Advantages
  • Python : Career Options, Scope
  • Python for Big Data Analytics
  • Why Python? Usage Options
  • Python Installation : Multi OS
  • Anaconda Software Installation
  • Jupyter Interface for Python
  • Python Activities with Jupyter
  • Notebooks : Python Web Interface
  • Notebooks and Cells: Introduction

Ch 7: Python Functions

  • Python Functions : Realtime Use
  • Function : Creation, Execution Call
  • Function Parameters, Arguments
  • Arguments Number, Arg keyword
  • Arbitrary Keyword & **kwargss
  • Default & List Value Parameters
  • Python Lambda Functions
  • Using Lamdba Options in Python
  • Anonymous Functions in Python
  • Arguments, Expressions
  • Recursive Functions, Usage
  • Return & Print with Lamdba

Ch 13: Data Analytics - Pandas

  • Python Modules & Pandas
  • Why Use Pandas?
  • Pandas Codebase & Usage
  • Installation of Pandas
  • import & pandas.DataFrame
  • Checking Pandas Version
  • Pandas Series
  • one-dimensional array
  • Labels : Creation, Use
  • series(), print()
  • Pandas DataFrames
  • Dataframes & Series

Ch 2: Basic Operations with Python

  • Python Interface : Creating Notebook
  • Adding Cells, Saving Notebook
  • Executing Basic Cells; Result Window
  • Single Line & Multi Line Comments
  • Save, Open / Clone Notebooks
  • Indentation Options with Python
  • Python : Internal Architecture
  • Code Editor, Source Files
  • Compiler, Byte Code, Virtual Machine
  • Program Execution : Py, PYC and PVM
  • Python Libraries / Modules
  • Compiler Versus Interpreter

Ch 8: Python Classes & Arrays

  • Python Classes & Objects
  • Python Classes : Usage
  • __init__() Function
  • __str__() Function
  • Self Parameters & Usage
  • Object Properties Options
  • Python Inheritance & Classes
  • Adding Parent & Child Classes
  • Add __init__() Function
  • Using super() Function
  • Add Properties, Methods
  • Polymorphism in Python

Ch 14: Data Analytics - DataFrames

  • Pandas DataFrames in Python
  • DataFrame() & Realtime Usage
  • Indexes & Named Options
  • Locate Row and Load Rows
  • Row Index & Index Lists
  • Load Files Into a DataFrame
  • Pandas Read CSV
  • pd.read_csv() Function
  • pd.options.display.max_rows
  • df.to_string() Function
  • Dictionary as JSON
  • tail() & null() Function

Ch 3: Data Types & Variables

  • Integer / Int Data Types
  • Float & String Data Types
  • Boolean Data Types, Binary Types
  • Sequence Types: List, Tuple
  • Range, Complex & memoryview
  • Retrieving Data Type: type()
  • Python Variables: Naming
  • Camel / Pascal / Snake Case
  • Multi Assignments & Casting
  • Multi Word Variables, PRINT
  • Multiple Variables and Vales
  • Unpack Collection, Outputs

Ch 9: Python Modules

  • Python Modules : Creation
  • Import Python Modules
  • Using Variables in Modules
  • Naming, Renaming Module
  • Built In Modules & dir
  • Using Modules, Properties
  • datetime module in Python
  • Date Objections, strftime Method
  • import datetime, datetime.now()
  • Using Python Constructors
  • Conditional Columns, Expressions
  • Disable / Enable Data Loads

Ch 15: Data Analytics - Pandas

  • Pandas - Cleaning Data
  • Removing Rows, Data Cleansing
  • Replace, Transform Columns
  • Data Discovery & Column Fill
  • Identify & Remove Duplicates
  • dropna(), fillna() Functions
  • Pandas - Data Correlations
  • Data Relations and Validations
  • Good & Bad Correlation
  • Perfect Correlation Scenarios
  • Python Data Plotting Options
  • matlib Module & Plotting

Ch 4: Python Operators, Conditions

  • Python Operators : Arithmetic
  • Assignment, Compare Operators
  • Logical, Identity Operators
  • Member & Bitwise Operators
  • Operator Precedence Options
  • Python Operator Expressions
  • Python If ... Else Statement
  • Short Hand If Statement, Use
  • OR, AND and NOT Statements
  • Pass Statement with Python
  • ELIF and ELSE IF Statements
  • Ternary Operators in Python

Ch 10: Python JSON & RegEx

  • Python JSON Concepts, Usage
  • Python Dictionary & import json
  • Convert from Python to JSON
  • Python Objects into JSON strings
  • Result Formatting & Ordering
  • json.dumps, print options
  • Python Regular Expressions
  • RegEx Module in Python
  • RegEx Functions : findall
  • search() Function & split
  • span() function & Usage
  • Using RegEx with JSON

Ch 16: SQL Server with Python - 1

  • Installing SQL Server DB Engine
  • Install Machine Learning Services
  • SQL Server Management Studio
  • Install Azure Data Studio Tool
  • sp_execute_external_script
  • Input Data & Result Sets
  • DDL & DML with Python
  • SQL_out, SQL_in with Python
  • Variables & Parameters in Python
  • Python Version, Package List
  • Script Parameters & Usage
  • WITH RESULT SETS Options

Ch 5: Python Loops, Iterations

  • Python Loop & Realtime Use
  • Python While Loop Statement
  • Break and Continue Statement
  • Using Print with While()
  • Iterations & Conditions
  • Exit Conditions : Cautions
  • Python For Loop Statement
  • Break, Continue & Range
  • Python Iterators : Creation
  • __iter__() and __next__()
  • Iterator vs Iterable
  • iter() and Looping Options

Ch 11: Python User Inputs & TRY

  • Python Try Except
  • Python Exception Handling
  • NameError Resolution
  • Python Finally Block, Usage
  • Raise an exception method
  • TypeError, Scripting in Python
  • Python User Inputs
  • Python String Formatting
  • Multiple Values & String
  • Python Index Numbers
  • Named Indexes, Usage
  • input() & raw_input()

Ch 17: SQL Server with Python - 2

  • Using pandas.Series with SQL Server
  • Indexing Methods and Realtime Use
  • Convert series to data frame
  • DataFrames with SQL Server
  • Output values into data.frame
  • Output Datasets and Usage
  • pymssql package in SQL Server
  • pip list & Package Manager
  • Python runtime, Py Package Index
  • pymssql.connect & Usage
  • Query Execution & Result
  • Cursor Variables & Usage

Ch 6: Python Collections

  • Python Collections (Arrays)
  • Python Collection Data Types
  • List, Tuple, Set, Dictionary
  • List Items, Ordered & Length
  • list() Constructor, print()
  • Python Tuples, Tuple Items
  • tuple() Constructor, Usage
  • Python Sets : Syntax Rules
  • Duplicates, Types, Ordered
  • Python Dictionaries: Usage
  • Changeable, Ordered Data
  • Dictionary Construct, type()

Ch 12: Python File Handling

  • File Handling
  • r, a, w, x modes
  • t, b Operations
  • File Activities
  • Read Only Parts
  • Loop, Close Files
  • Python File Write
  • Appending, Overwriting
  • Create a New File
  • import os, path.exists
  • f.open, f.write
  • f.read, f.close

Ch 18: Power BI with Python

  • Installing Power BI Desktop
  • Using Python Script Visual
  • PyScript Options & Tuning
  • Settings, Labelling Options
  • Running and Testing Scripts
  • Data Validations in Power BI
  • Power BI Cloud : ipynb Scripts
  • Python in Desktop Vs Cloud
  • Interactive Reports with Python
  • Power Query Options (M Lang)
  • Data Formatting with Python
  • Integrate SQL, Power BI, Python

SQL Server T-SQL, Azure SQL, Azure DBA, Azure BI, Azure Data Engineer, Power BI Training

 
 
 
For latest schedules Click Here

SQL School Training Institute is at your reach, 24 x 7 for Trainings, Jobs and Placements on SQL Server, SQL DBA, MSBI Trainings. Also include Azure SQL, Azure DBA, Azure BI and Power BI Training Courses. We provide LIVE Online Training, In-house Classroom Training as well as On-demand Video Tranings and Certification Trainings - 24 x 7. All our trainings are completely real-time and 100% practical. We provide Placement and Consulting Services in addition to Project Oriented Trainings. Register Today for Free Demo